Mathematical models in environmental, crop and food sciences

STAAA

Doctoral School in Agricultural, Environmental and Food Sciences April - 17 - 2019

Università degli Studi di Bologna

Giuliano.Vitali@unibo.it

Models & Modelling

- · Technology
- Machines & Games
- System Theory

PART II - Model Languages

- · Model
- Math Formalism

Simulation

- Programming
- Case Studies with Matlab

MODEL .. as a Software ?

- LAND management (GIS platform plugins)
 - Land Use
 - Basin / catchment (Runoff-Erosion)
- FARM DSS (Decision Support Systems)
 - Economical simulations
 - Irrigation (e.g.Cropwat / Aquacrop)

- Cropping System

- Crop Yield Simulator (DSSAT, Stics, Apsim)
- Soil Biochemistry (OM, Nitrogen, root)

- Community & population dynamics

- Response to environment
- Interactions (agents)

APP ?

http://google.about.com/od/a/g/apps_def.htm

APPs and Agriculture

...so what is a MODEL ?

a MODEL is a simplified representation of a REAL SYSTEM

..better say a a system's MODEL

Modeling an EXISTING system

a tale about perception and observation (and hypothesys)

the tale of the blind man

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant

MODEL types

- LANGUAGE LEVEL and COMPLEXITY
 - Conceptual M., Simulation M., Mathematical M., ..
- EXTERNAL MODEL .. analyze /sets INPUT
 - Environment (e.g. grow chamber)
 - User's behavior, Control actions
- INTERNAL MODEL
 - SYSTEM analysi focuses on STATE VARS

Communicate Structures & Relations **PURPOSES**

Modeling structures Modeling organisation Modeling dynamics

with the aim of

share vision Build an Operative model understand and discuss results **Communicate Structures & Relations**

Symbol dictionary (grammar) Syntax (rules)

LANGUAGE TYPES Graphic (universal) Formal alphabet + sintactical rules algebraic rules (calculus)

Translators / Converters / INTERFACES

Communicating Structures

	QUALITÀ DELLO STATO						
ENTITĂ DELLE PRESSION		Alto	Medio - alto	Medio	Medio - basso	Basso	
	Alto	7	8	8	9	10	
	Medio – alto	6	7	8	8	9	
	Medio	5	6	7	7	8	
	Medio - basso	3	4	5	6	7	
	Basso	1	2	3	4	5	

Organization

Pyramidal Diagram Venn Diagram

Target Diagram

Radial Diagram

DISCRETE TIME STEP

PETRI net

Pert chart / diagram

Gantt diagram / chart

	Sett-1	Sett-2	Sett-3	
actor1				
actor2]]
actor3				

Continuous Dynamics

Plots / Trends

Timing Diagrams

Mathematical models in environmental, crop and food sciences

Why do WE should use MATH?

..to understand System Dynamics !

Key concepts Derivative & Integrals

DERIVATIVE : dx(t) /dt

...is a ratio with the meaning of a rate, like a velocity ...accumulation, assimilation RATE, ...allows to observe how x(t) CHANGES

INTEGRAL : $\int \mathbf{x}(t) dt$

.. almost a summation, an accumulation, like growth ...give the results of x(t) at the end of its life

The Power of ANALOGIES

ANALOGY stands for likelihood, similarity in structural / functional way

Using ANALOGY is describing a NEW system structure and behaviour by means of a WELL KNOWN one

...parable ...allegory .. fable .. tale

SIMPLE systems from hydraulics and thermodynamics

Flow vs pressure, vs level

 $Q = K_p P$

Q = Kh dh/dtH = Hi + Q/kh t

Heat vs Temperature

$Q = K_T dT/dt$ $T = Ti + Q/K_T t$

Simple systems: .. from solid body mechanics

F(t) = m a(t)

F(t) = b v(t)

inertia

friction

elasticity

The exponential growth

- no limit to available resources
- net growth rate g=b-d
- no environmental influences

dy/dt = b y - d y

$dy/dt = gy \leftarrow g = b - d$

y: biomass t: time b: birth rate d: death rate g: net grow rate

.. has a solution $Y = A e^{gt}$

The logistic growth

the size of population limits population growth

$$\frac{dy}{dt} = g y - p y^2$$
$$\frac{dy}{dt} = r y(1 - y/k)$$

r: net grow rate

k: carring capacity

.. solution is: $Y = K / [1 + (K/Y_0 - 1) e^{-rt}]$

Lotka-Volterra Model

$$\frac{dx}{dt} = r x - axy$$
$$\frac{dy}{dt} = -m y + b x y$$

- x : prey
- y : predator
- r prey growth rate : Malthus law
- m predator mortality rate : natural mortality
- Mass action law
- a and b predation coefficients : b=ea
- e prey into predator biomass conversion coefficient

.. solved numerically

.. in this section we have seen

- model vs software/app
- modeling languages
- mathematical models
 - flow& rate
 - derivative & integrals
- analogies
- system dynamics
 - exponential growth
 - logistic growth
 - prey-predator system