Mathematical models in environmental, crop and food sciences

STAAA

Doctoral School in Agricultural, Environmental and Food Sciences April - 17 – 2019

Università degli Studi di Bologna

Giuliano.Vitali@unibo.it

Models & Modelling

- Technology
- Machines & Games
- System Theory

Model Languages

- · Model
- Math Formalism

PART III - Simulation

- · Programming
- Case studies with Matlab

SIMULATION

<u>SIM</u>ulate = Trying something <u>SIM</u>ilar

What is SIMULATION for ?

- Looking for NEW Solutions Theories
- **Propose** .. an innovative control system
- Observe .. analize expected behavior
- **TEST** .. the response of a model
- Evaluate NON OBSERVABLE STATE VARIABLES

WHY SIMULATION

We ONLY learn from mistakes,

Therefore man is looking for ways to reduce risks

Octave Chanute, 1894

A matter of Economy Simulation makes one spare: risks, time, cost

www.devongardenmachinery.co.uk /aebi-terratrac-tt280-hillside-tractor

Inverse problems example: the SIXPAR learning model

From Analogic to Numerical Models

- Analogical > Mathematical > Numerical Model
- Numerical Models are Discrete approximations of a continuous Mathematical
- Numerical Models can be solved by numerical procedures based on **solution algorithms**

Programming Languages / Code

- STATIC / Declarative
 - Formatting Languages (e.g. HTML)
 - DATA format (e.g. XLS
- Procedural Languages
 - Level / Compilability
 - Platform / Editing
 - Syntax / Library
 - Debugging / Versioning
 - Design / Documenting

What is a Program

A program is a procedure to be run to perform some (**repetitive**) elaboration on some data

- Code (=program, routines, functions)
- Components (libraries, modules, add-on)

Interfaces

- Data (database)
- Network (client/serve)
- Devices (hardware)
- User interface (GUI)

a Program in short

A program is a set of **statements** written in a given language (**code**) including:

- Variable Type Definition and Dimensioning
- Algebraic calculations
- Writing results e.g. to disk file or **console**

Code execution is ruled by:

- Logics (if-then-else, case)
- Flow Repetion (loop, while, for)

Which is the BEST language ?

- There is not a BEST language
- Each language has been designed to make easy to model some problems
- It is not possible to code EVERY problems with ONE language (easily)
- The choice of the language will be the one of your TEAM: learning (tricks, libraries) and debugging may take a long time !

Modeling process

- State the problem: well posedeness
- Find similar problems, try to write down a conceptual model, develop some diagram
- Simplifying: apply Occam razor
- Always check the Diagram be CLOSED
- Interact with some experienced modeler (in case enroll one in your team)
- Try to formalize relations by math expressions

From DIAGRAM to SIMULATION without programming !

MATLAB

Stateflow

Simulink

- Portable scientific calculator
- Programming environment > file.m
- GUIDE a GUI development framework > file.fig
- Simulation environment: Simulink
- Discrete STATE simulation: Stateflow

What is SIMULINK ?

- Dynamic simulation graphic development environment
- Numerical SOLVER
- Oriented to Continuous Systems
- May include STATE MACHINES (StateFlow)
- Based on *blocks* and *oriented edges*
- Does not require programming skillness
- Integrates user-defined functions or matlab routines
- May be integrated into Matlab Programs
- May use Matlab Routines

Simulink - basic blocks

- SOURCES: outputs only
 - Constant value / parameter
 - CLOCK: time
- SINKS: input only
 - SCOPE: observer
- Operators
 - Algebraic (+,-,x,:)
 - Functions (user defined): instant output
 - Integrate / Derivative

Example 1: the LAKE system

.. very last concepts

- simulation
- program & APP
- programming languages
- Matlab
- Simulink

CONCLUSIONS

Expected achievements

- Understand the importance of languages of modeling
- Understand the power of diagrams
- Understand the role of math
- Understand what system dynamics is
- Understand the role of a modeler
- Learned how to communicate with a modeler
- Get closer to modeling operativity

Thanks for your attention

Giuliano.Vitali@unibo.it

Case studies

- Simple programming
- Integration
- Lake w&wo outlet
- VPJ regulation vs control
- Population Exponential
- Population Logistic
- Population Prey-Predator
- Crop w&wo feed-back

